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Abstract: This paper describes a technique for computing optimal upper bound slopes stability factors based upon 

the Linear Matching Method. The method assumes a perfectly plastic material which obeys the Drucker-Prager 

yield criterion and its associated flow rule and involves the sequential matching of an appropriate linear material 

to the yield function. The basic concepts are described and the convergence of this method is guaranteed whether 

the real material is matched to a compressible or incompressible linear material. The process converges to the least 

upper bound associated with the class of displacement fields when implemented in a finite element method. 

Comparison with published solutions illustrates the accuracy and feasibility of the proposed method for a simple 

homogeneous slope stability problem.  
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I.    INTRODUCTION 

Predicting the stability of soil slopes is a classical problem for geotechnical engineers when designing embankments for 

roads, railways and other engineering structures. A good understanding of failure mechanism of both natural and man-

made earthen slopes is therefore necessary in order to better assist any remediation measure of potentially moving or 

failing slopes. Slope stability analysis methods have been developed over many years and continue to develop as a result 

of considerable advancement in theories, new constitutive soil models, instrumentations and technology. Many 

researchers have focused on assessing the stability of slopes using different methods of analysis. The limit equilibrium 

method and limit analysis based upon the upper and lower bound theorems which enable the true collapse load to be 

bracketed from above and below have been widely used as engineering design tools to predict the safety of slopes. 

Although the limit equilibrium analysis may sometimes lead to significant errors as both kinematic and static 

admissibility are violated, this approach enables complex soil profiles, seepage and a variety of loading conditions to be 

easily dealt with. Many comparisons of limit equilibrium (e.g. Fredlund and Krahn [1], Duncan and Wright [2], Nash [3]) 

indicate that techniques that satisfy all conditions of global equilibrium give similar results. Of particular interest in this 

article is the kinematic approach of limit analysis with application to 2D failures. An early application of this method was 

shown by Drucker and Prager [4], Chen et al. [5] and Chen [6], who considered a slope failing under plane-strain 

conditions. In recent years the emphasis has increasingly turned towards computational methods that rely upon plasticity 

limit theorems to locate the most critical failure surface by using various search strategies. These provide, assuming an 

associate flow rule, strict upper and lower bound values using the kinematics of the displacement finite element method 

for upper bounds Chen et al. [7] and stress finite elements for lower bounds Yu et al. [8], Kim et al. [9], Li et al. [10]. The 

relevant limit theorem is posed as a programming problem, to which an appropriate programming method is applied to 

estimate rigorous lower and upper bound solutions for the stability of simple slopes in both homogeneous and 

inhomogeneous soils. Among other available analysis methods are the boundary element methods Jiang [11] and the finite 

element methods, Matsui & San [12]. 
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In parallel with these developments, limit analysis and its extension “the shakedown analysis” have been applied in the 

prediction of the deformation and life assessment of structures subjected to cyclic mechanical and thermal loadings. In 

previous papers, (Boulbibane and Ponter [13], Boulbibane and Ponter [14]), a procedure was described for the evaluation 

of limit loads related to certain design criteria for structural materials in a cyclic state of creep and limit loads for 

indentation problems using the Drucker-Prager yield criterion, respectively. The procedure was based upon the Linear 

Matching Method where a sequence of linear problems are solved with spatially varying linear moduli. By repeated 

iterations the upper bound reduces to the minimum upper bound associated with the class of displacement field of the 

finite element mesh. For yield conditions dependent on both the effective von Mises stress and the hydrostatic pressure, 

both shear and bulk moduli of the linear material are adjusted so that, for the current strain rate distribution, the linear 

material is matched to the yield condition. A sufficient condition for convergence is then given by the condition that the 

surface of constant complementary energy lies entirely outside the yield surface. This condition cannot, however, be 

always satisfied. In Boulbibane and Ponter [15], it was shown that convergence occurred even if the sufficient condition 

was not satisfied. By considering a class of elliptic yield conditions (in von Mises effective stress-pressure space), it was 

possible to compute solutions where the sufficient condition is both satisfied and not satisfied by varying the effective 

Poison’s ratios of the linear material. 

In this paper we discuss the application of the Linear Matching Method to define upper bound limits for slope stability 

factors. In particular, we investigate the influence of key mechanical and geometrical parameters on the least upper bound 

solutions. In order to invoke the upper bound theorem of classical plasticity theory, a perfectly plastic soil model is 

assumed, which may be either purely cohesive or cohesive-frictional. The Drucker-Prager yield condition is adopted 

assuming an associated flow rule. The method calls upon procedures which form the basis of linear finite element 

analysis, it is possible to implement the method through the optional user procedures which are often included in 

commercial codes. For the solutions described in this paper the general code ABAQUS is used. In addition, a comparison 

with other methods is given and final remarks complete the paper. 

II.   METHOD DESCRIPTION 

In the present study, it is assumed that the yield function )(f  is defined by the Drucker-Prager failure criterion. 

Following the sign convention usually adopted in soil mechanics, according to which compression is considered positive, 

this function can be written in terms of the hydrostatic pressure p  and the von Mises effective stress   as follows: 

  0tan)(   pcf                       (1) 

with  
33

1Ip kk 


 ,  
2/1

2323 Jijij                      (2) 

are related to the first stress tensor invariant 1I  and to the second deviator stress tensor invariant 2J , which depends on 

the stress deviator ij   defined by: 

ijijij p              (3) 

The cohesion c  and the angle of internal friction   are assumed as the two material parameters defining the yield surface. 

The plastic strain rates resulting from yield may be represented as a vector ),( p

v

p   , where ijij   
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2 denote the von 

Mises effective strain rate and kkv     denotes the volumetric strain rate.  

For an arbitrary yield condition the associated flow rule is given by; 
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where   is a plastic multiplier. When applied to the Drucker-Prager yield condition as given by equation (1), equation (4) 

may be written in the form: 
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and hence, 

 tanpp

v
              (6) 

Values of the strength parameters c  and   for particular soils are often not directly available. Instead, the user is 

provided with the friction angle   and cohesion c  values of the Mohr-Coulomb model: 

0cos2sin)()()( 2121   cf                     (7) 

where 231    are the maximum, intermediate and minimum principal stresses. The two models equations (1, 7) 

become identical in terms of in-plane quantities for conditions of plane strain and this leads to the following equations: 
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A. The Linear Matching Method 

As mentioned previously, the method involves a programming technique where, at each iteration, the moduli of a linear 

viscous material are adjusted so that, for the current strain rate distribution, the linear material is matched to the yield 

condition. However, this condition alone is insufficient to uniquely define the moduli or for convergence to occur and 

additional conditions need to be applied. Detailed derivations for the general limit analysis problem are discussed in 

(Boulbibane and Ponter, [15] and Ponter et al., [16]). Here we specialise this formulation to upper bound limits for slope 

stability factors. 

An isotropic linear viscous material is described in terms of a shear modulus  , bulk modulus K  and an initial pressure 

Lp ; 
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where U  defines the complementary dissipation rate of the linear material. 

The method consists of the generation of a sequence of linear problem for such a material where  , K  and Lp  vary 

spatially.  At a certain stage of an iterative process, described below, a compatible strain rate distribution 
i

ij  and pressure 

distribution ip  are derived. The linear coefficients are then chosen so that the linear material and the yield condition are 

both consistent with 
i

ij  (Ponter et al., [16]). For the Drucker-Prager yield condition with an associated flow rule, this 

would require that equation (6) holds. However, it is not generally satisfied by the current linear solution. As a result, in 

the matching condition 
i  and 

ip  are used but 
i

v  is not used (see Boulbibane and Ponter [15]). Hence if 
i

y  and 
i

yp  

satisfy the yield condition (1) at the matching condition, the linear moduli are required to satisfy the following matching 

equations, 
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The matching condition equations (11) and (12) provides two equations for the three independent material constants,  , 

K  and Lp  or, equivalently E , L  and Lp , where L  is a (viscous) Poisons ratio and E  a uniaxial modulus. Hence one 

of these three may be chosen. In the following we assume throughout the iterative process that constL   and hence E  

and Lp  are given by; 

i
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yLE
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 ,   tanii

yL Kpp                               (13) 

In a typical slope stability analysis the only load considered is that of the soil weight. This load is given in terms of the 

unit weight  , and the limit analysis problem can be stated in the following manner: find the magnitude of unit weight 

that will cause the slope of given geometry to fail. Considering that the slope also may be loaded with a given distributed 

load (traction) iP  on boundary S, the principle of virtual work written for the true (but unknown) stress field c

ij  produced 

by the soil weight i , on a compatible strain rate field 
c

ij  with corresponding displacement rate field c

iu , takes the form: 
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Here c

UB  denotes the upper bound load parameter,   the unit weight magnitude and in

 

the unit vector in the direction of 

gravity. Assuming the associated flow condition, equation (6), and applying the principle of Virtual Work, Eq. (14) may 

be written in the equivalent form, 
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where 
P

ij  may be any distribution of stress in equilibrium with iP  and soil weight i . For consistency with the 

assumptions above, in evaluating c

UB  from (15) a distribution of iE
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c

ij     is used that is derived from v  given by the 

flow rule (6); 
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In this case Eq. (15) is no longer a strict upper bound as 
iE

ij  is not necessarily a compatible strain field. However it may 

still be regarded as an energy balance equation and can be used to calculate an estimate of the unit weight causing failure, 

c

UB
  which will be not less than the true value of L

 causing the slope to collapse. Because ch is a dimensionless 

group in the problem, the inequality (14) can be multiplied by the true value of ch to yield: 
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With these definitions a linear problem for a new compatible strain rate history 
f

ij and equilibrium stress field 
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The resulting value of f

UB , obtained by substituting the solution of (18), (19) into (15), may be expected to be a closer 

approximation to the optimal value than i

UB . An initial solution assumes that values of the moduli  , K  and Lp  are 

chosen arbitrary. As a result of this initial solution, the iterative process described by equations (11 – 15) is repeatedly 

applied until convergence occurs, i.e. 
i

ij

f

ij     and i

UB

f

UB   . The plastic strain components at instants where there is no 
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strain in the converge solution then decline in relative magnitude until they make no contribution to the upper bound 

solution. Although the sufficient condition for convergence in Ponter et al. [16] is not satisfied, least upper bounds are 

still obtained for the problems discussed in this paper, provided convergence occurs. This point was clarified through 

numerical examples in Boulbibane and Ponter [14].  

The method is implemented in the commercial finite element code ABAQUS. The normal mode of operation of such 

codes for non-linear analysis involves the solution of a sequence of linearized problems for incremental changes in stress, 

stain and displacement in time intervals corresponding to a predefined history of loading. At each increment, user routine 

allows a dynamic prescription of the Jacobian which defines the relationship between increments of stress and strain. The 

implementation involves carrying through a standard load history calculation for the body, but setting up the calculation 

sequence and Jacobian values so that each incremental solution provides the data for an iteration in the iterative process. 

Volume integral options evaluate the upper bound value of   which is then provided to the user routine for the evaluation 

of the next iteration. The matching condition (11, 12) is then applied at each Gauss point and results in variations of the 

three independent material constants,  , K  and Lp  within each element. At convergence, when consecutive linear 

solutions are identical, the conditions for the exact solution are obtained. The compatible strain-rate distribution is hence 

consistent with a stress distribution of the form p

ij  that satisfies the yield condition where the strain rates are non-zero. 

For finite element solutions where equilibrium of p

ij  is only satisfied in a Rayleigh-Ritz sense, the converged solution 

satisfies the conditions for the minimum upper bound amongst the class of displacement fields defined by the finite 

element mesh.  

III.    APPLICATION OF THE METHOD TO SLOPES STABILITY 

The above numerical procedure is used to investigate a simple embankment under its own weight. According to the upper 

bound theorem of limit analysis the embankment shown in Figure1 will collapse under its own weight if for any assumed 

failure mechanism the rate of external work done by the soil exceeds the rate of internal energy dissipation. In his limit 

analysis of a 2D slope collapse, Chen [6] pointed out that in plane-strain analysis, a rotational failure mechanism yields 

the least best estimate of the dimensionless critical height ch . The solutions described below are intended as reference 

solutions that supplement the widely used solution of Chen et al. [5]. In this case, the authors consider the slope stability 

problem using four-noded isoparametric plane strain elements as shown in Fig. 1.  

 

 

 

 

 

 

 

 

 

 

Fig.1 (a) Embankment geometry and (b) finite element mesh 

The soil is assumed to be a perfectly plastic material which obeys the Coulomb yield criterion and its associated flow rule. 

The viscous linear material Poisson’s ratio is assumed to be ( 35.0L ) for all computations. Values of internal friction 

given in Table 1 are those associated to Mohr-Coulomb yield condition. However, in the proposed computational 

technique parameters ( c ,  ) associated to Drucker-Parger, which can be easily obtained using equation (11), are used. 

An upper bound solution for the stability factor is sought by optimizing the unit weight of the soil mass with a load 

multiplier   for a slope with fixed height, internal friction angle and cohesion. As a result, finding the minimum of the 

stability factor is equivalent to computing the minimum of the load multiplier 
c

UB , as described above. Results in terms 

of chNs   as well as already existing limit analysis results are tabulated numerically in Table 1 for various material 

properties and slop geometries. As can be noted the proposed technique predicts nearly the same values of sN  as those 
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obtained by Chen et al. [5] with the exception for 0  and 30 . It is found that Values of chNs   obtained by 

Chen for ( 0 ) do not change as the value of (  ) changes. However, we found that these values increase as (  ) 

decreases. 

Table 1. Stability factors chNs   obtained by the Linear Matching Method and values given in Chen et al. [5] by 

assuming a curved failure mechanism. 

Friction angle   

Slope angle  in degrees  

20 30 45 60 

LMM         LA LMM         LA LMM         LA LMM         LA 

0 9.51          5.53 7.59            5.53 6.11            5.53  5.25            5.25 

5 14.35        11.46 10.09          9.13 7.48            7.35 6.14            6.16 

10 26.02        23.14 14.35        13.50 9.45            9.31 7.31            7.26 

15 72.0          69.40   22.34        21.69 12.17        12.05 8.70            8.63 

20  41.99        41.22 16.43        16.16 10.43        10.39 

25   23.28        22.90 13.04        12.74 

30   36.75        35.54 16.55        16.04 

35    21.60        20.94 

40    30.13        28.91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Formation and development of shear zone within the slope - contour plots of von-Mises effective strain. 

Using this approach, the response of the soil is effectively captured and the location and propagation of the shear zone is 

reliably simulated, as shown in Fig. 2. It is interesting to note the evolution of the failure mode with   and  . When   

 20,10    

 45,10    

 45,30    

 60,30    
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is large, the failure mode develops locally near the facing and when   is relatively small, slope instability develops 

through the foundation soil as local surficial or deep seated failure. Figure 3 shows that for a simple homogeneous slope, 

the stability factors obtained by the proposed method are almost equal to previously published solutions. 

IV. CONCLUSION 

In this study, a new technique has been proposed to analyse the stability of slopes by convergent non-linear programming 

method where the local gradient of the upper bound functional and the potential energy of the linear problem are matched 

at a current strain rate or during a strain rate history. It has been indicated earlier for specific examples that the kinematic 

approach of limit analysis yields an upper bound to the critical height of the slope. This statement is now proved to be 

more general, and it follows that the stability factor determined by the LMM approach is also an upper bound on its “true” 

value. The convergent programming method is capable of producing good estimate to the upper bound critical heights for 

bodies with isotropic yield condition where the yield function is dependent on the Von Mises effective stress and the 

hydrostatic pressure and in predicting failure modes. As the method relies upon linear solutions at each iteration, an 

implementation can be achieved in any commercial finite element package and this could provide an efficient and safe 

way for practical slope design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3 Stability analysis of simple embankment under its own weight: effect of internal frictional angles and slope angles 

on upper bound of slope critical heights.  
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